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Fig. 1: Given some images of input IDs, our ConsistentID can generate diverse per-
sonalized ID images based on text prompts using only a single image.

Abstract. Diffusion-based technologies have made significant strides,
particularly in personalized and customized facial generation. However,
existing methods face challenges in achieving high-fidelity and detailed
identity (ID) consistency, primarily due to insufficient fine-grained con-
trol over facial areas and the lack of a comprehensive strategy for ID
preservation by fully considering intricate facial details and the over-
all face. To address these limitations, we introduce ConsistentID, an
innovative method crafted for diverse identity-preserving portrait gen-
eration under fine-grained multimodal facial prompts, utilizing only a
single reference image. ConsistentID comprises two key components: a
multimodal facial prompt generator that combines facial features, corre-
sponding facial descriptions and the overall facial context to enhance
precision in facial details, and an ID-preservation network optimized
through the facial attention localization strategy, aimed at preserving ID
consistency in facial regions. Together, these components significantly
enhance the accuracy of ID preservation by introducing fine-grained
multimodal ID information from facial regions. To facilitate training of
ConsistentID, we present a fine-grained portrait dataset, FGID, with
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over 500,000 facial images, offering greater diversity and comprehen-
siveness than existing public facial datasets. Experimental results sub-
stantiate that our ConsistentID achieves exceptional precision and di-
versity in personalized facial generation, surpassing existing methods in
the MyStyle dataset. Furthermore, while ConsistentID introduces more
multimodal ID information, it maintains a fast inference speed during
generation. Our codes and pre-trained checkpoints will be available at
https://github.com/JackAILab/ConsistentID.

Keywords: Portrait generation · fine-grained conditions · identity preser-
vation

1 Introduction

Recently, image-generation technology [14, 16, 25, 41, 46] has undergone signifi-
cant evolution, driven by the emergence and advancement of diffusion-based [11,
45] text-to-image large models like GLIDE [30], DALL-E 2 [36], Imagen [42], Sta-
ble Diffusion (SD) [37], eDiff-I [1] and RAPHAEL [55]. This progress has given
rise to a multitude of application approaches across diverse scenarios. Positioned
as the central focus of these application approaches, personalized and customized
portrait generation has attracted widespread attention in both academic and in-
dustrial domains, owing to its extensive applicability in downstream tasks such
as E-commerce advertising, personalized gift customization and virtual try-ones.

The primary challenge in customized facial generation lies in maintaining
facial image consistency across different attributes based on one or multiple
reference images, leading to two key issues: ensuring accurate identity (ID) con-
sistency and achieving high-fidelity, diverse facial details. Current text-to-image
models [41,49,51,56,60], despite incorporating structural and content guidance,
face limitations in accurately controlling personalized and customized genera-
tion, particularly concerning the fidelity of generated images to reference images.

To improve the precision and diversity of personalized portrait generation
with reference images, numerous customized methodologies have emerged, meet-
ing users’ demands for high-quality customized images. These personalized ap-
proaches are categorized based on whether fine-tuning occurs during inference,
resulting in two distinct types: test-time fine-tuning and direct inference. Test-
time fine-tuning: This category includes methods such as Textual Inversion [8],
HyperDreambooth [41], and CustomDiffusion [20]. Users can achieve personal-
ized generation by providing a set of target ID images for post-training. Despite
achieving commendable high-fidelity results, the quality of the generated output
depends on the quality of manually collected data. Additionally, the manual col-
lection of customized data for fine-tuning introduces a labor-intensive and time-
consuming aspect, limiting its practicality. Direct inference: Another category
of models, including IP-Adapter [56], Fastcomposer [54], Photomaker [22], and
InstantID [53], adopts a single-stage inference approach. These models enhance
global ID consistency by either utilizing the image as a conditional input or ma-
nipulating image-trigger words. However, most methods frequently overlook fine-
grained information, such as landmarks and facial features. Although InstantID
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improves ID consistency to some extent by introducing landmarks, the visual
prompt landmark restricts the diversity and variability of key facial regions,
leading to stiff generated facial features. In summary, two pivotal challenges
requiring meticulous consideration persist in personalized portrait generation: 1)
neglect of fine-grained facial information and 2) identity inconsistency between
facial areas and the whole face, as illustrated in Figure 5.

To address these challenges, we introduce a novel method, ConsistentID,
crafted to maintain identity consistency and capture diverse facial details through
multimodal fine-grained ID information, employing only a single facial image
while ensuring high fidelity. Figure 2 provides the overview of our Consisten-
tID. ConsistentID comprises two key modules: 1) a multimodal facial prompt
generator and 2) an ID-preservation network. The former component includes a
fine-grained multimodal feature extractor and a facial ID feature extractor, en-
abling the generation of more detailed facial ID features using multi-conditions,
incorporating facial images, facial regions, and their corresponding textual de-
scriptions extracted from the multimodal large language model LLaVA1.5 [23].
Utilizing the facial ID features obtained from the initial module, we feed them
into the latter module, promoting ID consistency across each facial region via the
facial attention localization strategy. Additionally, we recognize the limitations
of existing portrait datasets [3, 27, 31, 52, 61], particularly in capturing diverse
and fine-grained identity-preserving facial details, crucial for the effectiveness
of ConsistentID. To address this, we introduce the inaugural Fine-Grained ID
Preservation (FGID) dataset, along with a fine-grained identity consistency met-
ric, providing a unique and comprehensive evaluation approach to enhance our
training and performance evaluation in facial details.

In summary, our contributions are as follows.

• We introduce ConsistentID to improve fine-grained customized facial gener-
ation by incorporating detailed descriptions of facial regions and local facial
features. Experimental results showcase the superiority of ConsistentID in
terms of ID consistency and high fidelity, even with just one reference im-
age. Simultaneously, despite the introduction of more detailed multimodal
fine-grained ID information in ConsistentID, the inference speed remains
relatively efficient, as shown in Table 1

• We devise an ID-preservation network optimized by facial attention local-
ization strategy, enabling more accurate ID preservation and more vivid fa-
cial generation. This mechanism ensures the preservation of ID consistency
within each facial region by preventing the blending of ID information from
different facial regions.

• We introduce the inaugural fine-grained facial generation dataset, FGID,
addressing limitations in existing datasets for capturing diverse identity-
preserving facial details. This dataset includes facial features and descrip-
tions of both facial regions and the entire face, complemented by a novel
fine-grained identity consistency metric, establishing a comprehensive eval-
uation framework for fine-grained facial generation performance.
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2 Related Work

Text-to-image Diffusion Models. Diffusion models have made notable ad-
vancements, garnering significant attention from both industry and academia,
primarily due to their exceptional semantic precision and high fidelity. The suc-
cess of these models can be attributed to the utilization of high-quality image-
text datasets, continual refinement of foundation modality encoders, and the
iterative enhancement of controlled modules. In the domain of text-to-image
generation, the encoding of text prompts involves utilizing a pretrained language
encoder, such as CLIP [35], to transform it into a latent representation, subse-
quently inserted into the diffusion model through the cross-attention mechanism.
Pioneering models in this realm encompass GLIDE [30], SD [37], DiT [32], among
others, with further developments and innovations continuing to emerge [13,55].
A notable advancement in this lineage is SDXL [33], which stands out as the
most powerful text-to-image generation model. It incorporates a larger Unet [38]
model and employs two text encoders for enhanced semantic control and re-
finement. As a follow-up, we use SD [37] model as our base model to achieve
personalized portrait generation.
Personalization in Diffusion Models. Due to the potent generative capa-
bility of the text-to-image diffusion model, many personalized generation mod-
els are constructed based on it. The mainstream personalized image synthesis
methods are categorized into two groups based on whether fine-tuning occurs
during test time. One group relies on optimization during test-time, with typical
methods including Dreambooth [40], Textual Inversion [8], IP-Adapter [53], Con-
trolNet [60], Custom Diffusion [20], and LoRA [12]. Dreambooth and Textual
Inversion fine-tune a special token S* to learn the concept during the fine-tuning
stage. In contrast, IP-Adapter, ControlNet, and LoRA insert image semantics us-
ing an additional learned module, such as cross-attention, to imbue a pre-trained
model with visual reasoning understanding ability.

Despite their advancements, these methods necessitate resource-intensive
backpropagation during each iteration, making the learning process time-consuming
and limiting their practicality. Recently, researchers have focused more on meth-
ods bypassing additional fine-tuning or inversion processes, mainly including IP-
Adapter [56], FastComposer [54], PhotoMaker [22], and InstantID [53]. This type
of method performs personalized generation using only an image with a single
forward process, which is more advantageous in calculation efficiency compared
to the former type. However, we observe that fine-grained facial features are
not fully considered in the training process, easily leading to ID inconsistency
or lower image quality, as shown in Figure 4. To address these limitations, we
introduce ConsistentID, aiming to mitigate the ID-preserving issue and enhance
fine-grained control capabilities while reducing data dependency. Our approach
incorporates a specially designed facial encoder using detailed descriptions of fa-
cial features and local image conditions as inputs. Additionally, we contribute to
a new landmark in the facial generation field by proposing: 1) the introduction
of the first fine-grained facial generation datasets and 2) the presentation of a
new metric that redefines the performance evaluation of facial generation.
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Fig. 2: The overall framework of our proposed ConsistentID. The framework comprises
two key modules: a multimodal facial ID generator and a purposefully crafted ID-
preservation network. The multimodal facial prompt generator consists of two essential
components: a fine-grained multimodal feature extractor, which focuses on capturing
detailed facial information, and a facial ID feature extractor dedicated to learning
facial ID features. On the other hand, the ID-preservation network utilizes both facial
textual and visual prompts, preventing the blending of ID information from different
facial regions through the facial attention localization strategy. This approach ensures
the preservation of ID consistency in the facial regions.

3 Method

3.1 Multimodal Facial Prompt Generator

Fine-grained Multimodal Feature Extractor. In this module, we indepen-
dently learn fine-grained facial visual and textual embeddings and feed them
into the designed lightweight facial encoder to generate fine-grained multi-modal
facial features. Three key components are used in the module, including text em-
bedding, facial embedding and facial encoder.
1) Text Embedding. Motivated by recent works [25,26,29,50] in personalized
facial generation, our goal is to introduce more detailed and accurate facial de-
scriptions. To achieve this, we input the entire facial image into the Multimodal
Large Language Model (MLLM) LLaVA1.5 [23] using the command prompt ‘De-
scribe this person’s facial features, including face, ears, eyes, nose, and mouth’
to obtain a description at the facial feature level. Subsequently, we replace the
words ‘face, ears, eyes, nose, and mouth’ in these feature-level descriptions with
the delimiter ‘<facial>’ and concatenate them with the captions of the entire
facial image. Finally, the concatenated descriptions are fed into the pre-trained
text encoder to learn fine-grained multimodal facial features. With both visual
and textual descriptions containing more precise ID information, our Consisten-
tID effectively mitigates ID inconsistency issues in facial details.
2) Facial Embedding. In contrast to existing methods [17, 28], [8, 9, 17, 22,
24, 28, 39, 53, 54]. that rely on brief textual descriptions or coarse-grained vi-
sual prompts, our goal is to integrate more fine-grained multimodal control
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information at the facial region level. This aims to achieve improved accu-
racy in identity (ID) consistency and diverse facial generation. To enrich the
ID-preservation information, we delve into more fine-grained facial features,
including eye gaze, earlobe characteristics, nose shape, and others. Following
the previous method [15,18, 21, 48, 58, 59],we employ the pre-trained face model
BiSeNet [57] to extract segmentation masks of facial areas, encompassing eyes,
nose, ears, mouth, and other regions, from the entire face. Subsequently, the fa-
cial region images obtained from these masks are fed into the pre-trained image
encoder to learn fine-grained facial embeddings. The inclusion of facial regions’
features results in fine-grained facial embeddings containing more abundant ID-
preservation information compared to features learned from the entire face. More
detailed processes are outlined in the supplementary materials.
3) Facial Encoder. Previous studies [8, 35, 40, 54, 57] have demonstrated that
relying solely on visual or textual prompts cannot comprehensively maintain ID
consistency both in appearance and semantic details. While IP-Adapter makes
the initial attempt to simultaneously inject multimodal information through two
distinct decoupled cross-attention mechanisms, it overlooks ID information from
crucial facial regions, rendering it susceptible to ID inconsistency in facial details.

To cultivate the potential of image and text prompts, inspired by the token
fusion approach of multimodal large language models, we design a facial encoder
to seamlessly integrate visual prompts with text prompts along the dimension of
the text sequence, as depicted in Figure 3. Specifically, given a facial embedding
and a caption embedding, the facial encoder initially employs a self-attention
mechanism to align the entire facial features with facial areas’ features, resulting
in aligned features denoted as f̂ i ∈ RN×D, where N = 5 represents the number
of facial feature areas, including eyes, mouth, ears, nose, and other facial regions,
and D represents the dimension of text embeddings. In cases where face images
lack a complete set of N facial features, the missing features are padded using
an all-zero matrix. Subsequently, we replace the text features at the position of
the delimiter ‘<facial>’ with f̂ i, and then employ two multi-layer perceptron
(MLP) to learn the text conditional embeddings.
Facial ID Feature Extractor. Except for the input condition of fine-grained
facial features, we also inject the character’s overall ID information into our
ConsistentID as a visual prompt. This process relies on the pre-trained CLIP
image encoder and the pre-trained face model from the specialized version of
the IP-Adapter [56] model, IPA-FaceID-Plus [56]. Specifically, the complete facial
images are concurrently fed into both encoders for visual feature extraction. After
these two encoders, a lightweight projection module, with parameters initialized
by IPA-FaceID-Plus, is used to generate the face embedding of the whole image.

3.2 ID-Preservation network

The effectiveness of image prompts in pre-trained text-to-image diffusion mod-
els [4,22,34,47,54,60] significantly enhances textual prompts, especially for con-
tent that is challenging to describe textually. However, visual prompts alone
often provide only coarse-grained control due to the semantic fuzziness of visual
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Fig. 3: The framework of our facial encoder for generating fine-grained multimodal
facial features.

tokens. To solve this, we follow the IP-Adapter and integrate fine-grained mul-
timodal ID prompts and overall ID prompts into the UNet model through the
cross-attention module to achieve precise ID preservation.

Motivated by Fastcomposer [54], we introduce an ID-consistent network to
maintain consistency in local ID features by directing the attention of facial
features to align with the corresponding facial regions. This optimization strategy
is derived from the observation that traditional cross-attention maps tend to
simultaneously focus on the entire image, posing a challenge in maintaining
ID features during the generation of facial regions. To address this issue, we
introduce facial segmentation masks during training to obtain attention scores
learned from the enhanced text cross-attention module for facial regions.

Let P ∈ [0, 1]h×w×n represent the cross-attention map that connects latent
pixels to multimodal conditional embeddings at each layer, where P [i, j, k] signi-
fies the attention map from the k-th conditional token to the (i, j) latent pixel.
Ideally, the attention maps of facial region tokens should focus exclusively on
facial feature areas, preventing the blending of identities between facial features
and averting propagation to the entire facial image. To achieve this goal, we pro-
pose localizing the cross-attention map using the segmentation mask of reference
facial regional features.

Let M = {m1,m2,m3, ...,mN} represent the segmentation masks of the ref-
erence portrait, I = {i1, i2, i3, ..., iN} as the index list indicating which facial
feature corresponds to visual and textual tokens in the multimodal prompt, and
Pi = P [:, :, i] ∈ [0, 1]h×w denote the cross-attention map of the i-th facial region’s
token, where I is generated using the special token ‘<facial>’. Given the cross-
attention map Pij , it should closely correspond to the facial region identified
by the j-th multimodal token, segmented by mj . To achieve this, we introduce
mj and apply it to Pij to obtain its corresponding activation region, aligning
with the segmentation mask mj of the j-th facial feature token. For achieving
this correspondence, a balanced L1 loss is employed to minimize the distance
between the cross-attention map and the segmentation mask:

Lloc =
1

N

N∑
j=1

(
mean

(
Pij [1−mj ]

)
−mean

(
Pij [mj ]

))
, (1)

where N denotes the number of the segmentaion masks. This loss formulation
aims to ensure that each facial feature token’s attention map aligns closely with



8 Huang et al.

its corresponding segmentation mask, promoting precise and localized attention
during the generation process.

3.3 Training and Inference Details

During the training process, we optimize only the parameters of the facial en-
coder and the projection module within the overall facial ID feature extractor,
while maintaining the parameters of the pre-trained diffusion model in a frozen
state. The training data for ConsistentID consists of facial image-text pairs. In
ConsistentID, to enhance text controllability, we prioritize the caption as the
primary prompt and concatenate it with more detailed descriptions of facial re-
gions extracted from LLaVA1.5, forming the ultimate textual input. Regarding
training loss functions, they align with those used in the original stable diffusion
models and are expressed as:

Lnoise = Ezt,t,Cf ,Cl,ϵ∼N (0,1)

[
∥ϵ− ϵθ (zt, t, Cf , Ci)∥22

]
, (2)

where Cl denotes the facial ID feature, and Cf is the fine-grained multimodal
facial feature.

The total loss function is Ltotal = Lnoise + Lloc.
During the inference process, we employ a straightforward delayed primacy

condition as similar to Fastcomposer. This allows the use of a separate text
representation initially, followed by enhanced text representation after a specific
step, effectively balancing identity preservation and editability. More discussions
are provided in the supplementary materials.

3.4 Fine-grained Human Dataset Construction

Our ConsistentID necessitates detailed facial features and corresponding textual
prompts to address issues like deformation, distortion, and blurring prevalent
in current facial generation methods. However, existing datasets [2, 5, 17, 61]
predominantly focus on local facial areas and lack fine-grained ID annotations
for specific features such as the nose, mouth, eyes, and ears.

To tackle this issue, we introduce a dataset pipeline outlined in the supple-
mentary materials to create our dataset FGID. This dataset encompasses com-
prehensive fine-grained ID information and detailed facial descriptions, which
are crucial for training the ConsistentID model.

Our FGID dataset, comprising 525,258 images is a compilation from diverse
public datasets such as FFHQ [17], CelebA [27], SFHQ [2], etc, including about
524,000 training data. This dataset is tailored to encompass both whole-face
and facial feature information, providing richer textual and visual details for
model training1. More details about the FGID dataset are available in the sup-
plementary materials, providing information on its statistics, characteristics, and
1 In the future, we intend to introduce additional datasets, including higher-level

datasets like LAION-Face [61] and self-collected multi-ID data, to further augment
diversity and information content.
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related ethical considerations. In the following, we elaborate on the multi-modal
data handling process. Textual Data: For textual facial descriptions, MLLM
LLaVA1.5 is utilized to extract detailed information using an embedded prompt
‘Please describe the people in the image, including their gender, age, cloth-
ing, facial expressions, and any other distinguishing features’. Visual Data:
BiSeNet [57] and InsightFace [7] models are deployed to capture both whole-face
ID information and facial feature information, ensuring comprehensive identity
details.

4 Experiment

Experimental Implements. In ConsistentID, we employ the SD1.5 model as
the foundational text-to-image model. For the fine-grained multimodal feature
extractor, we initialize the parameters of all text encoders and image encoders
with CLIP-ViT-H [44] and utilize its image projection layers to initialize the
learnable projection in the overall facial ID feature extractor. The entire frame-
work is optimized using Adam [19] on 8 NVIDIA 3090 GPUs, with a batch size of
16. We set the learning rate for all trainable modules to 1× 10−4. During train-
ing, we probabilistically remove 50% of the background information from the
characters with a 50% probability to mitigate interference. Additionally, to en-
hance generation performance through classifier guidance, there is a 10% chance
of replacing the original updated text embedding with a zero text embedding.
In inference, we employ delayed topic conditioning [17, 54] to resolve conflicts
between text and ID conditions. We utilize a 50-step DDIM [45] sampler, and
the scale for classifier-guided settings is set to 5.
Experimental Metrics. To assess the effectiveness and efficiency of Consisten-
tID, we employ six widely used metrics [40]: CLIP-I [8], CLIP-T [35], DINO [6],
FaceSim [43], FID [10], and inference speed. CLIP-T measures the average cosine
similarity between prompt and image CLIP embeddings, evaluating ID fidelity.
CLIP-I calculates the average pairwise cosine similarity between CLIP embed-
dings of generated and real images, assessing prompt fidelity. DINO represents
the average cosine similarity between ViT-S/16 embeddings of generated and real
images, indicating fine-grained image-level ID quality. FaceSim determines facial
similarity between generated and real images using FaceNet [43]. FID gauges the
quality of the generated images [10]. Inference speed denotes the calculation time
under the same running environment. Additionally, we introduce a novel metric,
FGIS (fine-grained identity similarity), to assess ID quality at the region level.
FGIS is computed as the average cosine similarity between DINO embeddings
of the generated facial regions in reference and generated images. A higher FGIS
value indicates increased ID fidelity in the generated facial regions.

4.1 Comparation Results

To demonstrate the effectiveness of ConsistentID, we conduct a comparative
analysis against state-of-the-art methods, including Fastcomposer [54], IP-Adapter
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Fig. 4: Qualitative comparison of universal recontextualization samples is conducted,
comparing our approach with other methods using five distinct identities and their
corresponding prompts. Our ConsistentID exhibits a more powerful capability in high-
quality generation, flexible editability, and strong identity fidelity.

[56], Photomaker [22], and InstantID [53]. Our focus is on personalized genera-
tion utilizing only one reference image. We utilize the officially provided models,
use the default parameters for each method, and restrict the inference to a sin-
gle reference image. In alignment with the Photomaker methodology, we employ
the Mystyle [31] dataset for quantitative assessment and incorporate over ten
identity datasets for visualization.
Quantitative results: Following Photomaker [22], we use the test dataset from
Mystyle [31], using MLLM LLaVA1.5 to obtain facial descriptions during infer-
ence. The quantitative comparison is conducted under the universal recontextu-
alization setting, utilizing a set of metrics to benchmark various aspects.

The results are showcased in Table 1. A thorough analysis of the table demon-
strates that ConsistentID consistently outperforms other methods across most
evaluated metrics, and surpasses other IP-Adapter-based methods in terms of
generation efficiency. This is attributed to ConsistentID’s fine-grained ID preser-
vation capability and the efficiency of the lightweight multimodal facial prompt
generator. Regarding the FID metric, the lower performance could be primarily
attributed to the limited generative capability of the base model SD1.5.
Visualized comparisons under different scenarios: To visually demon-
strate the advantages of ConsistentID, we present the text-edited generation
results of all methods using reference images of five distinct identities in Fig-
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CLIP-T ↑ CLIP-I ↑ DINO↑ FaceSim ↑ FGIS ↑ FID ↓ Speed (s)
Fastcomposer [54] 27.8 67.0 68.4 75.2 77.7 372.8 10
IP-Adapter [56] 27.6 75.0 74.5 75.6 73.4 320.0 13
Photomaker [22] 30.7 71.7 72.6 69.3 73.2 336.5 17
InstantID [53] 30.3 68.2 77.6 76.5 78.3 271.9 19
ConsistentID 31.1 76.7 78.5 77.2 81.4 312.4 16

Table 1: Quantitative comparison of the universal recontextualization setting on the
MyStyle test dataset. The benchmark metrics assessed text consistency (CLIP-T), the
preservation of coarse- and fine-grained ID information (CLIP-I, DINO, FaceSIM, and
FGIS), generation quality (FID), and inference efficiency (speed in seconds).

Origin FastComposer ConsistentID Origin InstantID ConsistentID

Origin IP-Adapter ConsistentID Origin Photomaker ConsistentID
Fig. 5: Comparison of facial feature details between our method and existing ap-
proaches. Notably, the characters generated by our method exhibit superior ID consis-
tency in facial features such as eyes, nose, and mouth.

ure 4. This visualization highlights ConsistentID’s capability to produce vibrant
and realistic images, with a particular emphasis on facial features. To further
elucidate this observation, we selectively magnify and compare specific facial de-
tails across all methods in four identities, as depicted in Figure 5. Our model
showcases exceptional ID preservation capabilities in facial details, especially
in the eyes and nose, attributed to fine-grained multimodal prompts and facial
regions’ ID information.

To validate the accurate text understanding capability, we additionally show
style-based and action-based text-edited results in Figure 6. We observe that
the generated images from InstantID lack sufficient flexibility in facial poses.
This limitation is likely attributed to Controlnet-based prompt insertion meth-
ods, which may easily overlook textual prompts. Simultaneously, we notice that,
while Photomaker can accurately comprehend textual and visual prompts, it
lacks the ID consistency of facial regions. In contrast, our ConsistentID achieves
optimal generation results due to its precise understanding of textual and visual
prompts. This further emphasizes the significance of multimodal fine-grained
ID information. To fully show the advantages of our ConsistentID, more visual-
ized comparisons are provided in the supplementary materials, including com-



12 Huang et al.
FastComposer IP-Adapter Photomaker InstantID ConsistentID

V
ib

ra
nt

 C
ol

or
fu

l
A

 w
om

an
 

re
ad

in
g 

a 
bo

ok
N

eo
np

un
k

A
 m
an

 
ho

ld
in

g 
a 

ca
ke

A
ct
io
n

A
ct
io
n

St
yl
e

St
yl
e

References

Fig. 6: Qualitative comparison of our model with other models on two special tasks:
stylization and action instruction.
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Fig. 7: Comparison of ConsistentID with IP-Adapter and its face version variants
conditioned on different styles.

parative experiments with fine-tuning-based models Dreambooth [40], Textual
Inversion [8], and CustomDiffusion [20].

Moreover, we compare ConsistentID with models specifically designed using
IP-Adapter as the base model in Figure 7. From the figure, it is evident that this
series of works currently falls short in achieving highly detailed ID preservation
in facial areas without fine-grained textual and visual prompts. In contrast, Con-
sistentID exhibits a robust capability to preserve the integrity of facial ID and
seamlessly blend it into various styles, utilizing multimodal fine-grained prompts.
This comparison emphasizes the superiority of ConsistentID in retaining identity
while simultaneously maintaining flexibility and control over style.

4.2 Human Study

We also investigate user preferences regarding image fidelity, fine-grained ID
fidelity, and overall ID fidelity through surveys. In Figure 8, we present a visual-
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ization of the proportion of total votes received by each method. Across all three
metric dimensions, ConsistentID holds the most significant share.
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Fig. 8: User preferences across image fi-
delity, fine-grained ID fidelity, overall ID
fidelity for different methods
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Fig. 9: Ablation study of the number of
facial regions.

4.3 Ablation Study

Facial ID Types: We conducted an ablation study on facial ID, considering
three variations: using solely overall facial ID, incorporating our designed fine-
grained ID, and concurrently leveraging both facial ID and our designed fine-
grained ID. Results in Table 2 show that using fine-grained ID features alone
enhances ID consistency in facial regions, indicated by an increased DINO value.
However, overall ID preservation, assessed by FaceSim, cannot be adequately
maintained. Utilizing only overall facial ID enhances facial similarity, but facial
feature consistency diminishes, performing significantly worse in CLIP-I and
DINO metrics compared to using only facial features. Combining both overall
facial ID and fine-grained ID leads to a balanced improvement in the model’s
overall ID fidelity compared to using only overall facial ID and fine-grained ID.

Lnoise Lloc CLIP-I ↑ DINO ↑ FGIS ↑ LLaVA1.5 CLIP-I ↑ DINO ↑ FGIS ↑
✓ - 66.4 77.8 82.9 - 75.5 86.1 85.6
✓ ✓ 75.5 86.1 85.6 ✓ 71.0 86.5 85.7

Facial Feature CLIP-I ↑ DINO ↑ FGIS ↑ ImageProjection CLIP-I ↑ DINO ↑ FGIS ↑
Overall Facial Feature 72.9 80.7 84.2 - 61.0 75.6 82.9
Fine-grained Feature 75.2 86.6 85.4 ✓ 75.5 86.1 85.6

Overall Facial & Fine-grained Feature 75.5 86.1 85.6
Table 2: Ablation study on ID features, loss functions, ImageProjection module, and
the usage of LLaVA1.5 in inference.

Facial attention localization strategy: We investigated the effectiveness of
facial attention localization strategies during training. The first strategy involves
Lnoise, while the second strategy adds attention loss Lloc. From Table 2, we ob-
serve that ConsistentID experiences a clear improvement in metrics related to
facial feature consistency and fine-grained ID preservation when Lloc is consid-
ered. This confirms the effectiveness of maintaining ID consistency between facial
regions and the entire face during the training process.
Image projection module: Additionally, we compared two training strate-
gies. The first involves frozen weights of the image projection model and only
training our designed FacialEncoder. The second strategy involves training both
simultaneously. The results from Table 2 indicate that concurrently training Im-
ageProjection brings the maximum benefits to the model. This is attributed to
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Fig. 10: The comparisons of two downstream applications.

our model being an ID preservation method of cooperative training with multi-
modal text and image information.
The LLaVA1.5 usage: In Table 2 (bottom), we present comparative results
conducted with textual descriptions using and not using LLaVA 1.5. When
LLaVA1.5 is not utilized, we use the prompt ‘The person has one nose, two
eyes, two ears, and a mouth’ to replace detailed descriptions of facial regions.
We observe an improvement in the generated quality with the introduction of
LLaVA1.5 in most metrics, with only CLIP-I showing degradation. This degra-
dation is attributed to the local attention of CLIP, which tends to overlook finer
facial details.
Different Facial Areas’ Number: To explore the influence of different num-
bers of facial areas, we adhere to the sequence ‘face, nose, eyes, ears, and mouth’
and incrementally introduce the selected facial areas, as depicted in Figure 9. We
note a progressive enhancement in image quality as the number of facial regions
increases, attributed to the richer multi-modal prompts. However, with regard
to the CLIP-T metric, detailed textual descriptions encompass a greater variety
of objects, potentially leading to oversight by the CLIP model.

4.4 Applications

Following the approach proposed in Photomaker [22], we verify facial high-
fidelity and naturalness through two downstream applications presented in Fig-
ure 10. These applications involve ‘Change Age & Gender’ and ‘Bringing a per-
son in an old photo into reality’. Compared to Photomaker and InstantID, our
ConsistentID demonstrates robust capabilities in maintaining ID consistency,
facial high-fidelity, and natural expressions. This superiority is attributed to the
effective fine-grained ID preservation of facial features.

5 Conclusion and Limitation

In this work, we introduce ConsistentID, an innovative method designed to main-
tain identity consistency and capture diverse facial details. We have developed
two novel modules: a multimodal facial prompt generator and an identity preser-
vation network. The former is dedicated to generating multimodal facial prompts
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by incorporating both visual and textual descriptions at the facial region level.
The latter aims to ensure ID consistency in each facial area through a facial
attention localization strategy, preventing the blending of ID information from
different facial regions. By leveraging multimodal fine-grained prompts, our ap-
proach achieves remarkable identity consistency and facial realism using only
a single facial image. Additionally, we present the FGID dataset, a compre-
hensive dataset containing fine-grained identity information and detailed facial
descriptions essential for training the ConsistentID model. Experimental results
demonstrate outstanding accuracy and diversity in personalized facial genera-
tion, surpassing existing methods on the MyStyle dataset.
Limitations: The utilization of MLLM in our approach may introduce limi-
tations that could affect specific facets of model performance. The constraints
posed by limited pose and expression may restrict the diversity of our method,
impacting its capability to handle facial variations. These limitations underscore
the necessity for in-depth discussion and exploration, specifically in addressing
challenges related to pose, expression, and the integration of GPT-4V.
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1 Compare with more fine-tuning-based models

We individually fine-tune CustomDiffusion [20], Dreambooth [40], and LoRA [12]
using 192 face images of Obama and 158 of Taylor Swift. These fine-tuned models
are then utilized for text-to-image inference. To ensure a fair comparison, all
models are based on Stable Diffusion v1.5 [37]. In Figure 1, we compare the
proposed ConsistentID with these fine-tuned models. It is noteworthy that our
training of ConsistentID relies solely on a single reference image, yet it achieves
comparable quality in synthesized images to methods trained with hundreds of
reference images.

2 More ablation

Attention loss Lloc: To further validate the effectiveness of our Lloc, we present
several comparisons using two different identities in Figure 2. From the figure,
we draw the following conclusions: 1) The details of key facial areas, such as Li
Feifei’s eye shape, are well preserved. 2) The appearances of facial regions are
highly consistent with the reference images, like eyes, ears, and mouths.
Delay control: In Figure 3, we provide visualized results to evaluate the impact
of delay control during inference. The term ‘merge step’ denotes the first time
step in which we incorporate fine-grained facial image features. It helps to con-
trol the balance between text prompts and face images. In general, as the ‘merge
step’ increases, the influence of fine-grained facial image features gradually di-
minishes. For example, if the ‘merge step’ is set to 0, it indicates that fine-grained
facial image features are dominant in the generation process and might result
in semantic inconsistencies. On the contrary, setting the ‘merge step’ to 0 will
maximize the guidance of text prompts, yet might harm the identity consistency.

To visually illustrate the impact of the ‘merge step’, we display the variation
curves for the CLIP-I, CLIP-T, and FGIS metrics as the ‘merge step’ increases
in Figure 4. From the figure, we observe a consistent trend where the textual
control gradually strengthens with each increment of the ‘merge step’.
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Fig. 1: The comparisons with more fine-tuning-based models.

BiSeNet InsightFace FacialEncoder UNet Inference
Time (s) 1 3 3 5 4

Table 1: Inference time of each module.

Infer time of each module: In Table 1, we present the inference time of each
module, which adds up to 16 seconds for processing one image. It quantitatively
demonstrates the competitive performance in terms of inference efficiency 1.

3 Dataset details
Data source: Our facial images are from three public datasets, including FFHQ [17],
CelebA [27], and SFHQ [2]. We select 70,000, 30,000, and 424,258 images from
these datasets, respectively. In a total of 524,258 images, 107,048 images have
recognizable IDs. Figure 6 shows some examples of these images and their cor-
responding captions.
Dataset pipeline: Below is the detailed our dataset processing pipeline: Each
image is initially fed into BiSeNet and LLaVA1.5 to obtain a fine-grained mask
and facial descriptions. Let Imask denote the fine-grained image mask, which is a
binary mask indicating our defined facial components. We then utilize Imask to
1 During the inference phase, the LLaVa or ChatGPT−4v module is not necessary

input. Effective outcomes can be achieved by solely utilizing predefined descriptors
of the facial description ‘face, nose, eyes, ears, and mouth’.
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Reference
With Attention 

Loss
Without 

Attention Loss
Without 

Attention Loss
With Attention 

Loss

a person in the jungle

a person in a firefighter outfit a person in a chef outfit

a person on the beach

Fig. 2: Visualized results with or without using attention loss.

CLIP-I
CLIP-T
FGIS

Index

Fig. 3: Performance variations of CLIP-I, CLIP-T, and FGIS metrics with increasing
‘merge step’.

segment out the corresponding regions from the original image and denote them
as Iface. Meanwhile, we utilize the InsightFace model to extract facial identity
features.

Dataset characteristics: In our dataset, we include 15 types of identities,
which are listed in Table 2. Subsequently, in Figure 7, we display the distri-
butions of gender and age across all identities. The figure illustrates a relative
balance of both properties in our dataset.

Dataset scenarios: In table 3, we further provide all prompts used in 45 sce-
narios. The scenarios are divided into 4 categories based on the different appli-
cations, including Clothing&Accessory, Action, Background and Style.

Evaluation IDs
1 Andrew Ng 6 Scarlett Johansson 11 Joe Biden
2 Barack Obama 7 Taylor Swift 12 Kamala Harris
3 Dwayne Johnson 8 Albert Einstein 13 Kaming He
4 Fei-Fei Li 9 Elon Mask 14 Lecun Yann
5 Michelle Obama 10 Geoffrey Hinton 15 Sam Altman

Table 2: ID names used for evaluation.
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Reference Merge 
Step = 0

Merge 
Step = 10

Merge 
Step = 20

Merge 
Step = 30

Merge 
Step = 40

Merge 
Step = 50

a person with a mountain in the background

a street art stencil of a person

a person on the beach

a person with a blue house in the background
Fig. 4: Visualized results under different ‘merge steps’. ‘Merge Step’ indicates when to
start adding facial image features to the text prompt.

22.6% 37.6% 20.3% 10.7% 5.8%2%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Age

0-19 20-29 30-39 40-49 50-59 60+

55.5% 44.5%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Gender

Female male

Fig. 5: The statistical characteristics of age and gender distribution in the FGID train-
ing dataset.

4 More training details.

1. We define the keywords of Tface as ‘face’, ‘ears’, ‘eyes’, ‘nose’, and ‘mouth’.
These keywords are then used to locate their positions in Iface, and a trigger word
‘<facial>’ is inserted to replace the keywords at the matched positions. Next,
the descriptions corresponding to facial regions are rearranged according to the
order of facial feature keywords, while any descriptions unrelated to facial regions
are eliminated. To resolve the problem of incomplete alignment between facial
region descriptions and actual facial regions, we address two scenarios. If Tface
comprises fewer than 5 region descriptions, Iface retains only the corresponding
regions, with unidentified regions substituted by zero matrices. Conversely, if
Tface includes complete descriptions for 5 regions but Iface lacks descriptions for
all 5, the absent region is replaced with a zero matrix.
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Segmentation CaptionOriginal
   The woman in the image has a beautiful and well-defined facial 
structure. She has a prominent nose, which is slightly pointed, and 
her eyes are large and wide-set. Her ears are small and delicate, 
and her mouth  is  s l ightly open, giving her a smile.  The 
combination of these features creates a captivating and attractive 
appearance.

   The woman in the image has a beautiful and smiling face. She 
has a prominent nose, which is located in the center of her face. 
Her eyes are wide open, and her mouth is slightly open, showing 
her teeth. Her skin appears to be smooth , but with a few frekles on 
it. Her hair is long and dark, covering both of her ears, making 
them invisible in this image.

   The man in the image has a smiling face with a prominent smile. 
The man has a prominent nose, which is located in the center of his 
face. His eyes are blue, and they are positioned close together. He 
has a small mouth, which is slightly open, and his teeth are visible 
as he smiles. The man's ears are relatively small, and his cheeks 
are square.
   The man  in the image has a prominent nose ,  which is a 
noticeable feature of his face. He also has a thin mustache, adding 
to his facial hair. His eyes are open, and he is smiling, which gives 
him a friendly and approachable appearance. The man has a black 
shirt on, and his ears are visible, completing his overall facial 
features.

Fig. 6: Several training data demos from our FGID dataset.

2. Tface with trigger words undergoes ID encoding via a tokenizer, resulting
in an encoded vector input_ids of length 77. The positions of trigger word
representations in input_ids are recorded for FacialEncoder model localization
during trigger word replacement.

3. To extract prior information for overall face ID, we referred to the IP-
Adapter model and employed the InsightFace model to extract facial ID features
for all images.

5 More visualization

Downstream applications: In Figures 7, 8, 9, and 10, we present additional
visualized results to demonstrate the capabilities of our model in high-fidelity
and flexible editing across various recontextualization scenarios, including age
modification, identity mixing, and gender transformation.

6 Discussion of ethical principles:

In the work, we introduce ConsistentID, a method for generating high-quality fa-
cial images while preserving identity fidelity. Our approach emphasizes efficiency,
diversity, and controllability in facial generation tasks, serving as a robust base-
line for academic research. However, the widespread adoption of such technology
raises ethical concerns regarding privacy, misinformation, and potential misuse.
We advocate for the responsible development and use of these tools, emphasizing
the importance of ethical guidelines to ensure their safe and ethical application
in computer vision.



Lloc 25

A old man wearing 
sunglasses

A woman 
happily smiling

A man coding in 
front a computer

A old woman 
cooking a meal

A old man 
reading a book

A young boy 
in a chef outfit

A young girl 
wearing a santahat

A old woman 
in a police outfit

Fig. 7: Additional application cases of ConsistentID for altering the age attribute of a
character.

A photo of a man

A photo of a woman A photo of a man

A photo of a woman

Fig. 8: Additional application cases of ConsistentID for identity confusion. Utilizing the
overall facial ID feature of one character (top). Leveraging the fine-grained multimodal
features from another character (bottom).

A man 
baking cookies

A man 
cooking a meal

A man on 
the beach

A man on a 
cobblestone street

A woman 
wearing a red hat

A woman holding
a cake

A man in 
the snow

A man wearing 
a yellow shirtReference

Reference

Reference

Reference

Fig. 9: Additional application cases of ConsistentID for bringing old photos back to
life.
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Reference IP-Adapter Photomaker InstantID ConsistentID

a person img wearing a yellow shirt

a person img working out at the gym

a person img in the jungle

a person img giving a lecture

a person img on the beach

a person img in a chef outfit

Fig. 10: Extended visualization in re-contextualization settings. These examples
demonstrate the high-identity fidelity and text editing capability of ConsistentID.
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Category Prompt

Clothing&
Accessory

a <class word> wearing a red hat
a <class word> wearing a santa hat
a <class word> wearing a rainbow scarf
a <class word> wearing a black top hat and a monocle
a <class word> in a chef outfit
a <class word> in a firefighter outfit
a <class word> in a police outfit
a <class word> wearing pink glasses
a <class word> wearing a yellow shirt
a <class word> in a purple wizard outfit

Background

a <class word> in the jungle
a <class word> in the snow
a <class word> on the beach
a <class word> on a cobblestone street
a <class word> on top of pink fabric
a <class word> on top of a wooden floor
a <class word> with a city in the background
a <class word> with a mountain in the background
a <class word> with a blue house in the background
a <class word> on top of a purple rug in a forest

Action

a <class word> holding a glass of wine
a <class word> holding a piece of cake
a <class word> giving a lecture
a <class word> reading a book
a <class word> gardening in the backyard
a <class word> cooking a meal
a <class word> working out at the gym
a <class word> walking the dog
a <class word> baking cookies
a <class word> wearing a doctoral cap
a <class word> wearing a spacesuit
a <class word> wearing sunglasses and necklace
a <class word> coding in front of a computer
a <class word> in a helmet and vest riding a motorcycle

Style

a painting of a <class word> in the style of Banksy
a painting of a <class word> in the style of Vincent Van Gogh
a colorful graffiti painting of a <class word>
a watercolor painting of a <class word>
a Greek marble sculpture of a <class word>
a street art mural of a <class word>
a black and white photograph of a <class word>
a pointillism painting of a <class word>
a Japanese woodblock print of a <class word>
a street art stencil of a <class word>

Table 3: Evaluation text prompts are categorized by Clothing&Accessories, Back-
ground, Action, and Style. During inference, the term ‘class’ will be substituted with
‘man’, ‘woman’, ‘girl’, etc. For each identity and prompt, we generated 1,000 images
randomly for evaluation.
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